A lower bound on the chromatic number of Mycielski graphs

نویسندگان

  • Massimiliano Caramia
  • Paolo Dell'Olmo
چکیده

In this work we give a new lower bound on the chromatic number of a Mycielski graph Mi. The result exploits a mapping between the coloring problem and a multiprocessor task scheduling problem. The tightness of the bound is proved for i = 1; : : : ; 8. c © 2001 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local chromatic number and topological properties of graphs

The local chromatic number of a graph, introduced by Erdős et al. in [3], is the minimum number of colors that must appear in the closed neighborhood of some vertex in any proper coloring of the graph. This talk, based on the papers [13, 14, 15], would like to survey some of our recent results on this parameter. We give a lower bound for the local chromatic number in terms of the lower bound of...

متن کامل

Local chromatic number and the Borsuk-Ulam Theorem

The local chromatic number of a graph was introduced in [13]. It is in between the chromatic and fractional chromatic numbers. This motivates the study of the local chromatic number of graphs for which these quantities are far apart. Such graphs include Kneser graphs, their vertex color-critical subgraphs, the stable Kneser (or Schrijver) graphs; Mycielski graphs, and their generalizations; and...

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

Multi-coloring and Mycielski’s construction

We consider a number of related results taken from two papers – one by W. Lin [1], and the other D. C. Fisher[2]. These articles treat various forms of graph colorings and the famous Mycielski construction. Recall that the Mycielskian μ(G) of a simple graph G is a graph whose chromatic number satisfies χ(μ(G)) = χ(G)+1, but whose largest clique is no larger than the largest clique in G. Extendi...

متن کامل

0 40 70 75 v 3 2 6 N ov 2 00 4 Local chromatic number , Ky Fan ’ s theorem , and circular colorings

The local chromatic number of a graph was introduced in [12]. It is in between the chromatic and fractional chromatic numbers. This motivates the study of the local chromatic number of graphs for which these quantities are far apart. Such graphs include Kneser graphs, their vertex color-critical subgraphs, the Schrijver (or stable Kneser) graphs; Mycielski graphs, and their generalizations; and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 235  شماره 

صفحات  -

تاریخ انتشار 2001